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Global Approaches to Quantitative Analysis of Gene-Expression Patterns
Observed by Use of Two-Dimensional Gel Electrophoresis
N. Leigh Anderson,1 Jean-Paul Hofmann,2’3 Anne Gemmell,’ and John Taylor1

A major difficulty in the use of two-dimensional protein maps
La identify and classify cell types is the problem or acquiring,
selecting, and analyzing quantitative data on hundreds of
protein spots. Here we use methods or multivariate statistics
to analyze the differences among a panel ol human cell lines,
in some cases involving quantitative data on more than 250
proteins. Principal-component and cluster-analysis tech-
niques show that the lines can be easily distinguished, even
by using the subset or proteins present in all cells. A
preliminary analysis or the protein changes brought about by
phorbol esler-induced differentiation or the line U937 is
included.

Additlenal l(eyphrases: computerized pattern interpretation -

“marker sets” of proteins multivariate statistics principal-
component analysis - cluster analysis - numerical taxonomy

Two-dimensional (2-D) electrophoresisof proteins has
beenusedprimarily to detectsmall differencesin protein
compositionbetweenpairsof relatedsamples.It is useful in
this contextbecausesequentialisoelectricfocusing(with the
samplein a mediumcontainingNP-40detergentandurea)
andpore gradient electrophoresisof samplestreatedwith
sodium dod.ecyl sulfate (SDS) can resolve thousands of
proteins(1), andthus onecan detectchangesin the abun-
dance,modification, or rate of synthesisof proteinsnever
beforeobserved.Inmostcomparisonsoftwo samples,visual
inspectionaloneallows detectionof thealterationor disap-
pearanceof asingleproteinin a field of 2000. This accounts
for the widespreadusefulnessof the techniquewithout
computerizeddatareduction.

In at leastthreesituations,however,visual analysishas
provedinadequate;(a) inter-comparisonof a largeseriesof
gels to evaluateapanelof differences(wheretheobserver’s
memory and notationmethodsare themajor limitations);
(b) interpretationof complexqualitativedifferences(suchas
the multiple! chargechangesseenin comparisonof species);
and (c) comparisonof patternsin searchof complexquanti-
tativepatterndifferences(asin comparisonsof gene-expres-
sion patternsin cell typesfrom onespecies).

Thefirst situationcanbedealtwith by usingacomputer
system capableof quantifying and stretching gels into
registration,combinedwith asimpledatabasecapabilityfor
rememberingfactsaboutspots(2).

The secondcasehasbeenattackedby using visual inter-
pretation (3-8), often with discouragingresults (3, 5). We
will describe!more-promisingapproachesto this problemin
aseparatepaper.

Thethird situationrequiresmultivariate statisticalanal-
ysis of computer-generatedquantitative data from two-
dimensionalgels,an initial explorationof which formsthe
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subjectof this paper.In this mode2-D analysiscanmake
perhapsauniquecontribution to biological understanding.
Alternative methodscanusually be devisedfor the discov-
ery or measurementof oneor a few proteins,but no other
techniqueprovidesas good a meansof characterizingcom-
prehensivelythemajor activitiesof thecell. A multivariate
analysisof 2-D mappingdatamay thus provide the only
workableapproachfor unravelling thecomplexprogramof
geneexpression.

The use of 2-D electrophoreticdata for multivariate
analysishasonly recentlybeenexplored.Tarroux (6) and
Westerbrink et al. (7) have successfullyused statistical
techniquesto analyzemanuallyencodeddatafrom2-D gels
of differentcell typesfrom thesameorganism.By calculat-
ing ameasureof distance(or, alternatively,thesimilarity)
betweengels, they were able to useclusteranalysisand
multi-dimensionalscalingto examinetherelativerelation-
shipsbetweensamples.The manual collection of data for
suchaninvestigationinvolvesseverallimitations,however:
(a) thedifficulty of obtaining largedatasetsroutinely (the
humanfactor), (b) the lack of any mathematicalassurance
that thespotsmeasuredarethe correctones(the eyecan
deducesome incorrect associations),and (c) the lack of
precisequantitation.Clearly,it wouldbebetterto beableto
applystatisticalmethodsto largerdatasetsgeneratedand
selectedby thecomputerin an unbiasedway.

At theoutset,it is useful to outline what thegoalsof a
fully computerizedstatisticalanalysisof 2-D patterndata
would be, Certainly it is possible to differentiatebetween
the2-D patternsof manycell typeson the basisof groupsof
“marker” proteinsdiscoveredduring the courseof explor-
atorycomparisons.A trainedobservercangleanimportant
information abouta cell type by examiningasmall setof
familiar proteinspots,for examplecytokeratins(oftenchar-
acteristicof epithelial cells; ref. 8) or tropomyosinpolypep-
tides(9). The difficulty with thisapproachis thatexpression
of other proteins among the vast majority not currently
regardedasspecificmarkersmayvary in waysnot correlat-
edwith arecognizedmarkerset. This would be the caseif,
for example,thereweretwo subtypesof epithelialcells that
sharedtheexpressionof certaincytokeratins.Classification
of expressionpatternsbasedon limited sets of markersis
thus likely to be incomplete,and if the chosen“markers”
happennot to representfundamentalfunctional character-
istics of thecell, sucha classificationmaybe misleadingas
well.

A very similar problemwasperceivedin the 1950’s with
regardto the taxonomicclassificationof organismson the
basisof quantitativedata.This led to the introduction of a
groupof statisticalmethodscollectively termed“numerical
taxonomy” (10), abasic tenetof which is thata largesetof
equally-weightedquantitative characters(or markers) is
likely to give a more objectivepictureof an organismthan
will a few special characterschosenby a taxonomist.A
proper statistical analysisof these(it is hoped)unbiased
data is then likely to yield a more generalclassification.
This notion, andits implied challengeto theclassification

CLINICAL CHEMISTRY, Vol. 30, No- 12,1984 2031



methodsdevisedby orthodox sytematists, has beendebated
eversince.The questionof who choosesthecharactersused
for classification,either qualitative (e.g. eye color or ab-
senceof feathers) or quantitative (e.g., the length of a
particularbDne orthe rateof utilization of glucose),exposes
a remnantof hmnari intervention in the procedurethat
leavesthe resultmore or lessarguable.

Thereare:,nevertheless,severalreasonsfor believingthat
the methods of numerical taxonomy might provide an
effective approachfor analyzingquantitative2-D gel data
and, conversely,that suchdatamayprovide ideal material
for numericaltaxonomicanalysis:

• We mayassumewith someconfidencethateachprotein
representedby an observedspothassomefunctionin the
cell, and hencethat a measurementof its abundanceis a
measurementofsomethingintrinsically relevantto thecell.
Thereseemsthus to beinherentin thedatasomeprotection
againstchoosingirrelevantcharacters.

• A great deal of data can be rather easily obtained,
making it possible to avoid reliance on a small numberof
characters.This practicalaspect(thefacility of datagenera-
tion) allows us to avoid thepitfalls inherentin classifying
complexobjectson thebasisof too few characters.

‘The typeof datainvolvedis availablealmostuniformly
for all living thing& Becauseall life consistsofcells,andthe
majority of workingpartsof all cells areproteins,it follows
thatcomparisonsofproteinsbetweenandwithin organisms
can (in theory) be universally applied.The consistencyof
this approachavoids some of the problems inherent in
presentspeciestaxonomy,whichclassifiesbirdson thebasis
of plumage,beakshape,etc., andmammalsor spongeson
the basisof entirely differentcriteria.

• On accountof our almost completeignoranceas to the
function or importanceof individual cellular proteins, the
assumptionof equal statistical weight for all characters
(generally required in numerical taxonomy) seemswell
justified. In fact someambiguityremains,becauseit is not
clearwhether thecharactersshould be assumedto be the
proteinsor theaminoacidsfromwhich theyaremade.If the
latter is thecase,we shouldweight the information in each
protein by thesizeof thatprotein (which is proportionalto
themutational targetsize of the correspondinggene). We
currently favor equal weights for proteins in comparisons
within aspecies,andweightingproportionalto proteinsize
whencomparingdifferent species.Somedayscientistsmay
disputewhethertheimportanceof(e.g.)F1-ATPaseis three
or fivetimes thatof tubulin in fibroblasts,but thatwill first
require generationof a classification of spots basedon
specific propertiesrelated to their differential expression.
From a logical point of view, we concludethat there is a
usefulmatchof aims andcapabilitiesbetween2-D geldata
and numerical taxonomicapproaches.

Thesevariousargumentsapplynot only to speciestaxono-
my, but to the classificationof cells accordingto stagesof
differentiationandto theexplorationof differencesbetween
normal andpathologicalcells.

Two principal typesof questionscanbe askedin thesort
of analysiswe aredeveloping.First,what do differencesin
abundance(or rateof synthesis)betweencell types tell us
about individual proteins? What proportion of proteins
appear to be qualitative markers, what proportion are
expressedsi:rnilarly in a variety of cell types (i.e.. might
constitutea ‘baseset”), andwhat proportionvary percepti-
bly but not radically? Can we determinewhethereach
“regulable” protein variesindependently,or whetherthere
areco-regulatedsetswhich alwaysvarytogether?Second,
what can be learned aboutthe relationshipsbetweencell
types?Do the various bone.marrow-derivedcell typesre-

sembleeachothermote than theyresembleafibroblast,for
example?In essence,canwe constructfrom thegeneexpres-
sion patterns alone an “ontogenetictree” that correctly
describesthelineageand/orfunctional relationshipsamong
cell types?If such a tree (and an associatedclassification
method)can be generated,then “new” cell typessuch as
cancer cells might be classified more meaningfully, and
differentiationcouldbebetterunderstood.Fromapractical
viewpoint, we alsocouldaskwhetherthevariouscultured
cell typeswidely usedas modelsystemsreally representin
vivo cell types.

In tMs paperwe discussmethodsfor generatingstatistical
datasetsin which theabundancesof numerousproteinsare
measuredacrossmanysamples(gels). Usingactual2-D gel
data,we haveappliedthetechniquesofprincipalcomponent
andclusteranalysisto theproblemofdetenniningrelation-
shipsbetweena seriesof human cell types,andhavemade
someprogressin demonstratingthe potential of this ap-
proach.

Materials and Methods

Preparation oF Samples

Cellswere labeledfor 18 h in methionine-freeRPMI 1640
medium (Gisco Laboratories,Grand Island, NY 14672)
containing,per liter, 100 mL of fetal bovine serum,and60
mCi of [555]methionine. Sampleswerepreparedby solubiliz-
ing cellsdirectly in asolutioncontaining,perliter, 9 mol of
urea, 20 mL of NP-40 detergent(Particle Data Inc., Elm-
hurst, IL 60126), 10 mL of mercaptoethanol,and20 mL of
ampholytes(Ampholines;LRB Instruments,Gaithersburg,
MD 20877)pH 9—11. Adherentcells were solubilized from
the bottom of tissue-culturewells wherethey had grown;
cells in suspensionwerepelleted by a 2-s centrifugation
(BeckmanMicrofuge; BeckmanInstruments,Fullerton, CA
92634) in capillary-bottomMicrofuge tubes(Walter Sar-
stedt, Princeton,NJ 08540)andsolubilizedimmediatelyby
aspiratinginto andexpelling from a Hamilton (Reno, NV
89510) syringe.Most of the lines we usedwere obtained
from the American Type Culture Collection. Monocytes
wereobtainedby densitygradientandadherencefraction.
ation of freshblood (11).

Two-Dimensional Eleclrophoresis
For this we usedeither the 18 x 18 cm or 20 X 25.5 cm

Iso-DALT system (12, 13). In the former system, sodium
dodecylsulfate (SDS) acrylamidegradient(90 to 180 g of
total acrylamideper liter) slabgelswereusedin thesecond
dimension; in the latter (for this study) we used 100 g/L
acrylamideslabs producedby a microprocessor-controlled
device. All sampleswere processedin groups of 20 or 40.
Fixed, stained,and destainedgels were autoradiographed
on either XAR or GTA films. Unlessotherwisenoted, we
usedLKB ampholytes(100 mL of pH 25—4 and900 mL of
pH 3.4—10per liter).

Image Processing, Spot Quantitation, and Gel
Matching

Two-dimensionalautoradiogramswere scannedwith an
OptronicsP-bOO microdensitometerat 100-j.tmresolution,
andanalyzedwith theArgonneTYc!io ii system(seeref. 2).
Briefly, this system (based on a VAX 11/780 computer,
Digital Equip. Co., Maynard,MA 01754)appliesfilm correc-
tions,removesbackground,detectsspots,andfits themwith
two-dimensionalgaussianforms.Theresultis a list of spots,
eachcharacterizedby position,amplitude,andshape(x- and
y-halfwidths).For matchingpatternsto oneanotherweused
the ~ycuo i display system, and constructeda master
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patternconlainiing all themajor spotson any gel. Finally,
we stretchedthewhole set of patternscorrespondingto a
singleelectrophoresisrun into superpositionwith themas-
ter pattern.

Selection o~Data

We soughtto applystatisticalproceduresonly to datathat
could be objectivelydefinedas “good.” This is necessaryfor
two reasons:(a) someregionsof 2-D gelsarecrowdedwith
spotsat theseresolutions,andsomelargespotscan befitted
by differentnumbersorshapesofspotsondifferentgels.The
possibility thus exists for mismatchingsomespots.(b) The
stretchingprocesscannotalways remove all differential
distortions betweena pair of gels. In a small distorted
region, a few spots may not be matchedat all, or may be
matchedincorrectly. Failure to matchsomespotsmakesit
difficult to know whethera particular protein is “missing”
(i.e., undetectable)on a gel or insteadis presentbut un-
matched.Tominimize thesepotentialdifficultieswe applied
a selectionprocedurebasedon acomputationof the likeli-
hoodthatagivenproteinis correctlymatched.Oncethegels
arestretchedinto registration,the “overlap”of eachspoton
the“master” gelwith everyother spot on the “object” gel is
computed(Figure 1). In this casewe used as the overlap
measurethevalue of a gaussianfunction of user-assigned
width (typically 0,7) andheight 1.0 evaluatedat d, whichis
thephysicaldistancebetweenthespoteenters

Previouswork (17) hasshownthat, whengelsgiving the
resolutionoftheseareused,approximately95%ofspotswill
be placedwithin 0.7 mm of theexpectedpositionswhen the
patternis stretchedonto a masterpatternby themethods
described(18). F’or eachmasterspotm, datafrom a corre-
spondingobjectspoto areincludedif theoverlapof m with o
exceedsa certain threshold(usually 0.5), and if the ra—o
overlapis more than90% of the total overlapof ,a with all
objectspotsor of o with all masterspots.Theseconditions
assurea reliable assignment.If this condition is not ful-
filled, a “missing data” flag is insertedfor thevalue of the
protein r~in the currentobject. The one exceptionoccurs
when the total overlapof m with all objectspotsfalls below
somethreshold(usually0.001) indicatingcompleteabsence
of any spot in the area. In this casea “minimum detectable
spot” value is used,usually SeL equal to the smallestspot
quantifiedin thecurrentseries~f gels.

-I
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Fig, 1. Schematic description of criteria used in data selection
The recrangis at upper leftshows a small region or a 2-D pattern containing three
spots in the master spct pattern (000hinuous ellipses, M:l,2,3) and three spots ci
the supetirnposedobject spot pattern (d~she~ieLl,~ses,0:1,2,3). The rectangle &
lower right shows results obtained tram a computation of gaussian overlap
between each master and each oblect apet. According to the selection criteria
used in this work, spols M.’3 and 0.3 would be considered as valid data (>.5
overlap, overlap or this pair >90% of total overlap of either with all other spots).
the m~1chof 0,2 With M:l or M.2 would be rejected as ambiguous, and 0:1 Would
be Found to be unambiguously absent from the master pattern (overlap ol 0:I wilh
all master spots is <.001)

The assemblyof adata~etthenconsistsin theselectionof
spotsthatareeitherunequivocallyassignedor unequivocal.
ly absenton all gels in theset, i.e., haveno missing data
flags. This procedureresults in an objectiveselectionof
“well-assigned”spots.In particularcases,afurtherselection
involving restriction to a sectionof thegel or a predefined
spat group can be used.In datasetswhere the sameor
similar samplesareanalyzedmore thantwice,it is possible
to “fill in” somemissingdataflags by using theaverageof
thevaluesfor thatspoton theothergelsofthesamesample.
We have used this method to fill in a maximum of one
missingdataflag per sampletype per spot.

Multivariate Analysis
For theseinitial studieswe used theARTHUR 81 package

of multivariate statistical-analysissoftware (Infometrix,
Inc., Seattle, WA 98125)- The initial datamatrix of spot
abundanceswasautoscaledto give a column (gel) meanof
zero andavarianceof 1.0.Principal component(PC) analy-
sis wasperformedwith useof the KAPRiN routine, andthe
dataweretransformedby usingHATR,&N into aspaceconsist-
ing of the first 10 principalcomponents.A distancematrix
wascomputedusingeuclideandistancesin the transformed
spaceafter weightingof eachcoordinateby thepercentage
of total datavariancerepresentedby thecorrespondingPC
axis (eigenvalue),This distancematrix was analyzedby a
completelinkageclusteralgorithm(routine HIER) to yield a
dendrogramof similarity. The above analysis was per-
formed both for the data viewed as spot measurements
characterizinggels (gel space)or gelmeasurementscharac-
terizing spots(spot space).

Results
A seriesof experimentsis necessaryto determinethe

usefulnessof multivariatestatisticalapproachesin cell-type
comparisons.We haveexaminedtherelationshipsof differ-
encesbetweencell types to (a) variationsamongdifferent
gels of thesamesampleand(b)variationsamongsamplesof
the samecell type preparedon different occasions.Such
experimentsarerequiredto demonstratethe importanceof
anymajor differencesobservedbetweencell types.Finally,
we examineddffl’erences betweengroups of related cell
types.

Comparison of Five Cell Types: Assessment oF Gel-
to-Gel Reproducibility

Replicate2-D analyseswereperformedon [35S]methion-
me-labeledsamplespreparedfrom eachof five human cell
lines (onesampleper line). All the gels wererunasoneiso-
DALi batch, for maximum self-consistency.Gel resolution
(definedin ref. 17) wasbetween13000and16500for these
gels.The five cell lines wereselectedas in vitro representa-
tives of genuinelydistinct cell types; “GM607” is lympho-
blastoidline, “1494” a normal fibroblast,“HTB-63” amela-
noma line, “BT-20” a breast-tumorline, and “HTB-3” a
bladder-tumorline. We analyzeda total of 16 gels (four
triplicate runs and one quadruplicaterun). The resulting
patterns (“spotfiles”) were treated and data selectedas
describedin Materi.al,sandMethods,yielding afinal dataset
of 285 spotsfrom eachof 16 gels,or 4560 measurements.

In this experiment,agel (or, moreprecisely,asample)can
be looked upon as a point in a 285-dimensionalspace,
marking by its position alongeach of 285 perpendicular
axestheabundanceof oneofthe 285proteinspots.We wish
to know thedistribution in this spaceof the 16 points that
correspondto the gel patterns.In particular, we want to
know whetherthepoints correspondingto replicatesof one
samplearetightly clusteredandwhetherthesetsof points
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correspondingto different cell types are well separated.
Becauseit is not possiblet0 “look” into a 285-dimensional
space,we appliedprincipal-componentanalysisasa means
ofreducingthedimensionalityofthedatawhileretainingas
much of the information as possible. With this procedure
oneselectsanewsetoforthogonalaxesin theoriginalspace
along which mostof the variationoccurs.For the present
data, the first threenew axes(the largestthreeprincipal
components) represent respectively 24.8%, 23.0%, and
21.6%ofthevariationin theoriginaldata(.a total of69.4%).

Figure 2 showsplotsof thepositionsof the 16 gelson the
threeplanescorrespondingto the th-st andsecond,first and
third, and secondand third principal components.These
viewsrepresentthreedifferentaspectsof acubecomprising
thefirst threedimensionsoftheprincipalcomponentspace.
The groupsof pointsrepresentingreplicatesof asampleare
in generalLightly clustered,while thefive cell typesareall
well separatedin atleastoneplane.In orderto displaymore
clearly thedistancerelationshipsbetweenthegelsin thePC
space,we calculatedadistancematrix of all possiblegel-to-
geldistances.Eachelementconsistsof aeuclideandistance
in whichseparationalongeachPC axiswasweightedby the
eigenvalueassociatedwith that axis, consideredover the
first sixPC axes(91.7% of total variance).A complete-li.nk
clusteranalysisof this distancematrix yieldedthedendro-
gram shown (Figure 2). With the exceptionof one rather
poorgel, all replicatesofa singlesamplearemorethan90%
similar,whereasthesimilarity of thecell typesrangesfrom
0% t0 50% on this arbitraryscale.

The aboveresultswereobtainedby usingalargepopula-
tion of spotsthat includedmanyqualitativemarkers—i.e.,
spotsthatweredetectedin somebut not other lines. When
thecalculationwasrestrictedto only the 56 spotsthatwere
detected(or filled in, as describedearlier)on all 16 gels,the
results shown in Figure 3 were obtained.Although the
replicatesareperhapsnot quiteas tightly clusteredaswhen

EE:. l~
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F

Fig. 3. PC and cluster analysis of the same16 samples (Five cell lines)
as Fig. 2, but using only 58 spots present in all lines
The calculation is displayed as in Figure 2, except that only the lirat two principal
components are shown. TheSe Iwo ac~unlfor 29.1% and 24.9% ol total data
variance, respectively. and In the distance calculation used to produce the
dendrogrsnl we used the lirat four principal components (27.2’,’. oF total variance),
Tile cell types are nearly as Well resolved as In Figure 2

all thedatawereused,the cell typesareneverthelessvery
M clearly distinguishedin the similarity dendrogram.The
dendrogram resemblesbut is not identicalto thatobtained

with the full data, indicating that relationshipsobtained
with different protein setsand at low levels of similarity
must be comparedwith caution.

In orderto exploretherelationshipsbetweenproteins,we
computedPC analysesanddistancematricesas above,but
with theadditionalstepof autoscalingthevaluesfor eachof

Similarity

Fig. 2. Results of principal-component and similarity-cluster analyses o(
replicate samples From Five human cell lines, For 295 protein spots
The three square panels show the positions of gels on three planes Formed by all
pairs of the first three principal components. Components 1, 2, and 2 account
successively For 24.2, 22.0, and 21 ST. oF the total data variance (For a total oF
69.4%). Euclidean distances between samples calculated in the PC space (First
six coordinates 2tllerweighling each coordinate by the variance represented), and
analyzed by using a complete-link cluslerlng procedure, yield the dendrogram
shown. Five groups oF samples emerge, corresponding to the lye cell types (Mis
the HT5-63 mehsnoraa,L is the GM-607 lynlphoblasloid, Fis the 1494 tibrcblast,
E is the HTB-3 bladder epitbelium, and B is the 21.20 breast tumor). Circles
surrounding sample groups are intended to indicate only the rough group size,
not variance

the 58 spots.Figure 4 shows an imageof the masterspot
patternwith anindicationof onesetof coregulated(or, more
properly, “similarly regulated”)spotsderivedfrom the full
datadendrograrnshownat theright.

Comparisons of the Same Cell Types Labeled on
DiFferent Days

Threeof thecell lines usedabovewere labeledon a series
of separateoccasionsafter subcultureswere established.
Thegels analyzed(resolution12 000 to 13 000) showBT-20
at one, two, three, and sevendays, HTB-63 at two, three,
andsevendays, andthe fibroblast 1386 at one, two, and
sevendays. The PC analysisand dendrogramshown in
Figure5demonstratesthat thecelltypesarewell separated
as comparedwith thesereplicatecultures, which remain
well clustered.Differencesin proteinpatternascribableto
growth rate or stateof medium depletion (variablesthat
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Fig. 4. An image oF tine synthetic master pattern (i.e., one containing all
proteins observed in the live cell types), showing a set of Four similarly
regulated proteins taken from the full expression-similarity dendrogram
(at the righL)
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Similarity
Fig. 5. PC and cluster analysis oF 10 samples of three cell lines
In this case the samples From each cell type were prepared on different days, and
thus include variation arising From call-culture conditions, Principal components 1
and 2 account For 37.2% and 24.6% oF total dale variance, respectively. The
dendrogram is based on he First four components accounting For a total 0(79.1 ‘/.

oF variance. Despite call-culture variations, the three cell ypes are still well
resolved

changesubstantiallyduring a weekof culture) thus appear
to be small comparedwith thedifferencesbetweentypes.

Analysis ol a Differentiational Model System

Basedon tests of specific marker proteins, it hasbeen
demonstratedthatcertainculturedcell lines canbe madeto
altertheirpatternsof geneexpressionin vitro by treatment
with variouschemicalagents.Figure6 showsaPC analysis
of the effects of an activephorbolester(phorbol myristate
acetate)and dimethyl sulfoxide on the human histiocytic

Similarity
Fig. 6. Example of a prototype differentiation experiment
C is a ~nlrol sample ol U937 hisloc~iclymphoma cells, 0 is a sample OF U937
treated with dimethyl sulFoxide. 15 mLIL (little effect), Pis U937 treated with 5 x
10’ mot& aclive phorbol ester (inducing diFFerentiation), and Mis a sample oF
normal peripheral blood monocyles. The induced dilteronSation is considerable,
but does not appear to result in a shift towards the expression pallem of a
monocyle, Components I and 2 account For 59,5% and 32.4% of total variance
(92’/. total)

lymphoma line 1J937 (14), andthe relationshipof control
andtreatedcells to thenonnalperipheralbloodmonocyte.
Only proteinsdetectedon all gels wereusedin theanalysis.
Gel resolution was 14 000 to 16 000. It is evident that
dimethyl sulfoxide has little if any effect, while PMA
producessubstantialchange,in accordancewith its known
physiological defects(15). The effect of phorbolmyristate
acetateappearsnot, however, to involve differentiation
directly towardstheexpressionpatternofthenormalmono-
cyte, A complete time course of the PMA-associated
changes,andcomparisonof thesewith monocytes,macro-
phages,andactivatedmacrophageswill berequiredto fully
characterizethedifferentiationalchangesoccurringin this
system.

Discussion
2-D protein patternscontain largeamountsof quantita-

tive datathatdirectly reflect the functional statusof cells.
Although human observersare capableof searchingsuch
datafor simple markerscorrelatedwith theavailableexter-
nal information, global analysis—i.e.,examinationof the
entire data—for complexpatterns of changeis extremely
difficult. Differentiation, neoplastic transformation, and
some dn.ig effects areknown to involve complex changes,
and thus there is a requirementto develop an approach
capableof dealingwith dataof this type. Ideally, onewould
like to use a method that could, by itself, discover the
underlyinglogical structureof the geneexpressioncontrol
mechanisms.Such an approach,basedon the methodsof
artificial intelligenceand expertsystems(16), is likely to
becomefeasiblewithin thenext decade, if a large enough
baseof information is assembled.For thepresent,however,
it is useful to explore the possibilities presentedby the
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applicatioiri of statistical techniquesfor the detectionof
patterns of change and for evaluating the relationship
betweendifferent patterns.This more-limitedapproachal-
lows at leastthe measurementof similarities and differ-
encesbetweenvariouscomplexpatternsof change.

Using the statistical techniquesof principal-component
and cluster analysis,we have shown that a variety of
humanculturedcell typescanbedistinguishedon thebasis
of complex patterns of protein expression.In the case
examined,thecellscould bedistinguishedalmostas well by
usingquantitativedifferencesin proteinsexpressedby all
the cells as they couldby usingafull setof qualitativeand
quantitativemarkers.This result indicatesthat there is a
wealthof usefulinformationinpurelyquantitativecell-type
differences.

We considertheconceptof a multi-dimensionalspaceof
gene expressionpatternsveryuseful.Theexactstructureof
such aspacedependsonthesetofproteinsusedto definethe
coordinates,andhencecanonly bestandardizedby choosing
representative,well-resolved, fixed groups of proteins. A
greatdealofworkremainsto bedonebeforesuchgroupscan
be chosenproperly Nevertheless,the possibility of using
such a spaceto look at andmeasure“distances”between
variouscell typeswithin an experimentis intriguing. Of
specialinterestis thecaseof acellline thatmovesin sucha
spaceover time (i.e., that differentiates).The simple proto-
type experiment reportedhere, involving the effect of a
phorbolestertumorpromoteron thecellline 1J937,provides
an exampleof an extensivechangein thepatternof gene
expressiondue to onewidely useddifferentiation-inducing
agent,Phc,rbolmyristate acetatecausesdifferentiation to-
wards a monocyticform in HL-60 promyelocyticleukemia
cells, andit causestheappearanceof somemonocytemark-
ersin U93’7 as well (N.L.A. andAG.,unpublished).Another
widely usedagent,dimethyl sulfoxide (capableof inducing
differentiation towards a granulocytic form in HL-60), is
shownto have little effect on U937under thesame condi-
tions. Principal-componentanalysisshowsthe geneexpres-
sion changesbroughtaboutby phorbolmyristateacetateto
be almost orthogonal (i.e., generally unrelated) to those
separating15937 cells from theperipheralblood monocyte,
at leastat thetime point shown.Clearly,adetailedinvesti-
gation of both the time course of the gene expression
changesiii 15937 and HL-60—as well as the range of
expression patterns associatedwith monocytes, macro-
phages,activatedmacrophages,and granulocytes—willbe
requiredto characterizeadequatelythe phorbol myristate
acetate-inducedchanges.In undertakingsuchan analysis,
we hope to define the trajectoriesfollowed by thesecells
duringin vitro differentiation.The ultimate goal of deduc-
ing thepathwaysof in vivo differentiationby analysisof a
largeseriesof in vitro systems,eachexhibitingapartof the
overall system, appearsfeasible if these statistical ap-
proachesa:reused.
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