Electrophoresis 1995, 16, 1977-1981

N. Leigh Anderson' Ricardo Esquer-Blasco' Jean-Paul Hofmann' Lydie Meheus' Jos Raymackers' Sandra Steiner' Frank Witzmann' Norman G. Anderson'

¹Large Scale Biology Corporation, Rockville, MD ²Innogenetics NV, Ghent ³Sandoz Pharma Ltd, Drug Safety Assessment, Toxicology, Basel ⁴Molecular Anatomy Laboratory, Indiana University Purdue University Columbus, Columbus, IN

An updated two-dimensional gel database of rat liver proteins useful in gene regulation and drug effect studies

We have improved upon the reference two-dimensional (2-D) electrophoretic map of rat liver proteins originally published in 1991 (N. L. Anderson *et al.*, *Electrophoresis* 1991, *12*, 907–930). A total of 53 proteins (102 spots) are now identified, many by microsequencing. In most cases, spots cut from wet, Coomassie Blue stained '2-D gels were submitted to internal tryptic digestion [2], and individual peptides, separated by high-performance liquid chromatography (HPLC), were sequenced using a Perkin-Elmer 477A sequenator. Additional spots were identified using specific antibodies.

Figure 1 shows the current annotated 2-D map of F344 rat liver, analyzed using the Iso-DALT system (20 \times 25 cm gels) and BDH 4-8 carrier ampholytes. Both the map itself and the master spot number system remain the same as shown in the original publication. Table 1 lists the important features of each identification shown, including the gel position, pI, and M, for the most abundant or most basic form of each protein. Using this extended base of identified spots, a series of four improved calibration functions has been derived for the pl and SDS- M_r axes (the first two of which are shown in Fig. 2A and B). Both forward and reverse functions are derived, so that one can compute the physical properties of a spot with a given gel location, or inversely compute the gel position expected for a protein having given physical properties:

$$Y_{\text{RATLIVER}} = f_{\text{M}_{\text{C}}\text{-RATLIVER Y}} \left(M_{\text{rsequence-derived}} \right)$$
(1)

 $X_{\text{RATLIVER}} = f_{\text{pl-ratliver x}} \left(pI_{\text{sequence-derived}} \right)$ (2)

 $M_{\rm rGEL-DERIVED} = f_{\rm RATLIVER Y-M_{\rm f}}(Y_{\rm RATLIVER})$ (3)

 $pI_{GEL-DERIVED} = f_{RATLIVER X-pi} (X_{RATLIVER})$ (4)

A spreadsheet program (in Microsoft Excel) was developed to facilitate flexible computation of p/s from amino acid sequence data, and the results were entered into a relational database (Microsoft Access). A table of spot positions and sequence-derived pI's and M_r 's was fitted with a large series of analytic equations using Tablecurve (Jandel Scientific), and the four conversion Eqs. (1)-(4), relating computed pI and gel X coordinate, or computed molecular weight and gel Y coordinate, were selected, based on criteria of simplicity, goodness of fit and favorable asymptotic behavior. Table 2 lists the equations and coefficients. Application of Eqs. (3) and (4) to a spot's X and Y coordinates, given in [1], produce improved M_r estimates, and allow computation of pI

Correspondence: Dr. Leigh Anderson, Large Scale Biology Corporation, 9620 Medical Center Drive, Rockville, MD 20850-3338 USA (Tel: +301-424-5989; Fax: +301-762-4892; email: leigh@lsbc.com)

Keywords: Two-dimensional polyacrylamide gel electrophoresis / Liver / Map / Identification / Calibration

directly in pH units, instead of in terms of positions relative to creatine phosphokinase (CPK) charge standards. The inverse Eqs. (1) and (2) were used to compute the gel positions of a series of pI and M_r tick marks. These tick marks were plotted with SigmaPlot (Jandel), together with fiducial marks locating several prominent spots, and the resulting graphic was aligned over the synthetic gel image (computed by Kepler from the master gel pattern) using Freelance (Lotus Development). Maps were printed as Postscript output from Freelance, either in black and white (as shown here) or in color, where label color indicates subcellular location (available from the first author upon request). We have also used the rat liver 2-D pattern as presented here to calibrate the patterns of other samples. Using mixtures of rat liver and mouse liver samples, for example, we made composite 2-D patterns that allow use of the rat pattern to standardize both axes of the mouse pattern. This was accomplished by deriving transformations relating the rat and mouse X, and separately the rat and mouse Y, axes (Table 2, lower half; Fig. 2C and D) based on a series of spots that coelectrophorese in these closely related species. These functions were then applied to derive equations relating the mouse liver X and Y to pI and SDS-M, (Eqs. 5 and 6 below). The resulting standardized 2-D pattern for B6C3F1 mouse liver is shown in Fig. 3.

$$M_{\rm MOUSELIVER} = f_{\rm RATLIVER Y-M_{\rm f}} (f_{\rm MOUSELIVER Y-RATLIVER Y} (Y_{\rm MOUSELIVER}))$$
(5)

$$pI_{\text{MOUSELIVER}} = f_{\text{RATLIVER } x-pi} (f_{\text{MOUSELIVER } x-\text{RATLIVER } x} (X_{\text{MOUSE LIVER}}))$$
(6)

A slightly more complex approach can be used to standardize samples that have few or no spots co-electrophoresing with rat liver proteins. In this case, a 2-D gel is prepared with a mixture of the two samples, and four functions (forward and backward, each for X and Y) are derived relating each sample's own master pattern to the composite. The required functions are then applied in a nested fashion to yield the desired result (using rat plasma as an example):

$$M_{ratplasma} = f_{ratliver y-m_{r}} (f_{ratplasma+liver y-ratliver y} (f_{ratplasma y-ratplasma+liver y} (Y_{ratplasma})))$$
(7)

0173-0835/95/1010-1977 \$5.00+.25/0

Figure 1. Master 2-D gel pattern of Fischer 344 rat liver proteins, annotated with 53 protein identifications and computed p1 and M_t axes. Tentative identifications are in italic type.

MSN"	Protein ID ^h '	Protein name	Identification comments	Gel X ^{c1} Experimental pI ^{d1}		Gel Y ^{el}	Experimental Mr ^d
126	HADO-HUMAN ^{ei}	3-HA-3,4-DO: 3-hydroxy- anthranilate-3,4-dioxy- genase	Internal sequence	871.95	5.36	921.35	30 207
137, 159, 288, 258	DIDH_RAT	3HDD: 3-hydroxysteroid dihydrodiol reductase	Ab (T.M. Penning) and pure protein	1857.52	6.51	822.52	34 406
173	MU'P_RAT	a ₂ u globulin	Presence in liver microsome lumen, T abundance in kidney, pl. M_c	919.16	5.43	1313.81	19 549
38	ACTB_HUMAN	Actin B	Analogy with other mammalian patterns (e.g. human) through coelectrophoresis	763.40	5.19	693.64	41 586
68	ACTG HUMAN	Actin y	Analogy with other mammalian patterns (e.g. human) through coelectrophoresis	779.42	5.21	692.26	41 677
693	AFAR_RAT	Aflatoxin B1 aldehyde reductase	Internal sequence	1993.32	6.72	818.60	34 593
28, 21, 33	ALBU_RAT	Albumin	Coelectrophoresis with principal plasma protein	1262.81	5.86	445.64	66 354
43	DHAM RAT	Aldehyde dehydrogenase	N-Terminal sequence and AAA	1317.72	5.91	589.03	49 602
96	ARGI RAT	Arginase	Internal sequence	1730.72	6.34	756.02	37 819
117	SUAR RAT	Arylsulfotransferase	Internal sequence	1547.96	6.14	849.08	33 186
1163, 1161, 1162, 20	GR78 RAT	BIP (GRP-78)	Ab (F. Witzmann)	665.33	5.01	397.39	74 564
185	CAH3 RAT	CA-111	Uncertain; by comparison with mouse	1996.60	6.72	1017.02	26 887
123	CALM HUMAN	Calmodulin	Analogy with human cellular patterns through coelectrophoresis	23.05	4.03	1433.25	17 419
3, 201, 48, 39, 22, 24	CRTC RAT	Calreticulin	Ab (Lance Pohl)	310.59	4.34	433.80	68 206

Table	1.	Proteins	identified	in	the	2-D	pattern	oſ	F344	rat	liver
Laure		1 10101113	i dentine d			2.0	patienti	٠.		1 14 1	

•.

.

Table 1. continued

•

MSN"	Protein IDb)	Protein name	Identification comments	Gel X ^{e)}	Experimental p/ ^{d)}	Gel Y ^e	Experimenta M_r^{d}
184, 1186, 14, 174, 118	CPSM_RAT	Carbamyl phosphate synthase	2-D of pure protein; comfirmed by N-terminal sequence and AAA	1453.56	6.05	181.64	160 640
, 167, 157 4, 61	CATA_RAT	Catalase	Internal sequence	2000.81	6.73	499.64	58 968
36		COX-II i	Ab (J. W. Taanman), confirmed by internal sequence	452.57		1062.67	25 504
7	CYB5_RAT	Cytochrome B5	2-D of pure protein; Ab; confirmed by AAA	515.68	4.73	1370.55	18 493
1	CK-RAT ^{c)}	Cytokeratin	Location in cytoskeletal fraction	1165.12	5.75	569.09	51 448
9	CK-RAT ^{e)}	Cytokeratin	Location in cytoskeletal fraction	743.11		605.23	48 187
11	ENPL-RAT ^{el}	Endoplasmin	Ab (F. Witzmann)	567.73	4.83		112 194
)	ENOA_RAT	Enolase A	Internal sequence and AAA	1399.78		623.54	46 674
7	ER60_RAT	ER-60	N-Terminal sequence (R. M. Van Frank)	1184.20	5.77	523.51	56.169
7	ATPB_RAT	F1 ATPase B	N-Terminal sequence and AAA	629.06		588.83	49 620
96	ATP7_RAT	F1 ATPase o	Internal sequence	1227.24		1184.65	22 310
)	F16P_RAT		Uncertain; by comparison with ID in Garrison and Wager (JBC 257:13135-13143)	924.54		737.77	38 858
2, 78	DHE3_RAT	Glutamate dehydrogenase	N-Terminal sequence and internal sequence	1887 39	6.55	566.92	51 655
25	HAST-RAT	HAST-I: N-hydroxyaryl- amine sulfotransferase	Internal sequence	1297.94		861.55	32 638
07	HO1_RAT	Heme oxygenase 1	Uncertain; available data from internal sequence	1219.39	5.81	915.71	30 423
13, 1250, 33	HMCS_RAT	HMG CoA synthase, cytosolic	Ab (J. Germershausen)	1033.48	5.59	538.13	54 571
	HMCS_RAT	HMG CoA synthase, mitochondrial (frag)	Ab (J. Germershausen), N-terminal sequence (Steiner/Lottspeich)	666.40	5.02	1019.42	26 811
, 23, 1307	HS7C_RAT	HSC-70	Positional homology (with human, etc.) through coelectrophoresis	811.87	5.27	425.76	69 521
5, 2 5, 110	P60_RAT	HSP-60	Ab (F. Witzman); confirmed by N-terminal sequence and AAA	845.09	5.32	5 20.03	56 561
71	HS70-RAT	HSP-70	Ab (F. Witzman)	976.11	5 51	437.14	67 674
	HS90-RAT	HSP-90	Ab (F. Witzman)	659.86		329	90 107
56	INGI-HUMAN		Internal sequence	993.85		1006.04	• • • • •
15, 734	LAMB-RAT ^{e)}	Lamin B	Positional homology with human through coelectrophoresis, nuclear location	737.10	5.14	425.19	69 615
0	LAMR-RAT ^{e)}	"Laminin receptor"	Internal sequence	534.02	4 77	697.62	41 327
27	FABL_RAT	L-FABP (liver fatty acid	Ab (N. M. Bass)	1586.09		1483.43	
34	MDHC_MOUS E	binding protein) Malate dehydrogenase	Internal sequence	1270.85	5.86	861.96	32 620
8, 35, 226	GR75-RAT ^{e)}	Mitcon:3; grp75	Positional homology with human through coelectrophoresis	905.67	5.41	413.67	71 589
175, 251	NCPR_RAT	NADPH P450 reductase	2-D of pure protein	874 69	5.29	393.21	75 366
168, 1170,	PDI_RAT	PDI: Protein disulfide	N-Terminal sequence (R. M. van Frank), At		-		55 618
171 7, 93	ALBU_RAT	isomerase Pro-Albumin	Microsomal lumen location, pI , M_r relative	1391.03	5.99	446.68	66 195
24			to albumin	000 41	c 12		
36 20	APA1_RAT IPK1_BOVIN	Pro-APO A-I lipoprotein Protein kinase C inhibitor 1	Coelectrophoresis with plasma protein Internal sequence; homology with bovine	920.41 1480.01	5.43 6.08	1137.51 1458.81	
52	PNPH_MOUSE	Purine nucleoside	protein Internal sequence	1507.19	6.10	911.16	30 599
179, 1180. 181, 1182,	PYVC-RAT ^{e)}	phosphorylase Pyruvate carboxylase	Tentative; 2-D of pure protein (J. G. Henslee, JBC, 1979); reported in Biochim.	1485.10	6.08	223.52	131 589
183 5, 103	SM30_RAT	SMP-30: Senescence	Biophys. Acta 1022, 115–125 Internal sequence	721.71	5.11	830.10	34 051
135	SODC_RAT	marker protein-30 Superoxide dismutase	AAA; comfirmed by internal sequence	1161.24	5.74	1388.68	8 18 173
172	TPM-RAT ⁽⁾	Tm: tropomyosin	(R. M. Van Frank) Location in cytoskeleton, 2-D position	476.24	4.66	957.86	5 28 865
277, 56	TBA1_RAT	Tubulin α	relative to human, Ab Positional homology with human through	688.22	2 5.06	537.67	54 620
50, 1225	TBB1_RAT	Tubulin β	coelectrophoresis, cytoskeletal location Positional homology with human through coelectrophoresis, cytoskeletal location	621.29	9 4.93	535.48	3 54 8 55
1224	VIME_RAT	Vimentin	Positonal homology with human through coelectrophoresis, cytoskeletal location	673.00	5.03	539.5	54 426

Table 1. continued

MSN ²¹	Protein 1Db)	Protein name	Identification comments		Experimental p1 ^{d)}	Gel Y ^{e1}	Experimental M ^{d1}
113	Unknown	?: not in sequence databases	Internal sequence	1191.28	5.78	680.42	42 469
104	BBPL_RAT	23 kDa morphine-binding protein	Internal sequence	773.31	5.20	1182.41	22 363

a) Master spot number (MSN) from [1]

b) SwissPROT identifier

c) Coordinates of the most basic or most abundant assigned spot on the F344 master gel pattern

d) pI and M_t of the most basic or most abundant assigned spot, derived from the calibration functions included here

e) SwissPROT style proposed identifier

Abbreviations: AAA, amino acid analysis; Ab, antibody

Table	2.	Equations	and	coefficients
-------	----	-----------	-----	--------------

Function	Equation (f)	r2	a	b	c	d	e
Rat gel $Y = f(computed M)$	$(r_r) y = a + bexp(-x/c)$	0.988181021	178.74803	1967.7892	32363.958		×
Rat gel $X = f(computed p)$	$y = a + bx + cx/\ln x + d/x + e/x^{1}$	0.99247216	-8685665.5	-904497.94	3856926.1	18276844	-27154534
Computed $M_t = f(rat gel)$		0.9960177	-8464.5809	19095881	-0.9086255		
Computed $pI = f(rat gel X)$) $y = a + bx + cx^2 + dx^2 \ln x + ex^3$	0.99176499	4.044686	-0.00114238	0.0000323	-0.00000455	0.0000000176
Mouse get $Y = f(rat get Y)$	$y = a + bx + cx^{1.5} + dx^{0.5} \ln x + dx^{0.5} \ln x$						
	ex/Inx	0.99951069	11861.44	678.91666	-0.78964914	1567.5639	-6953.9592
Mouse gel $X = f(rat gel X)$) $y = a + bx^2 \ln x + cx^{2.5} + dx^3$	0.99926349	58.935923	0.00091353	-0.000213688	0.00000159	
Rat get $Y = f(mouse get)$) $y = a + bx^2 \ln x + cx^{2.5} + dx^3$	0.99950032	69.740526	0.00050772	-0.000130392	0.00000116	
Rat gel $X = f(mouse gel X)$) $y = a + bx + cx^2 \ln x + dx^{2.5} + ex$	0.9992832	-198.07189	2.0899063	-0.000671191	0.000145189	-0.000000986

Figure 2. Plots showing fits of selected equations (continuous curves) to data on identified proteins (square symbols). (A) pl computed from sequence data versus gel X position for identified spots in F344 rat liver; (B) M_r computed from sequence data versus gel Y position for identified spots in F344 rat liver; (C) gel X position for spots in B6C3F1 mouse liver versus X position in F3443 rat liver, for coelectrophoresing spots; (D) gel Y position for spots in B6C3F1 mouse liver versus Y position in F3443 rat liver, for coelectrophoresing spots. In each case, inverse equations were also computed (Table 2).

Figure 3. Master 2-D gel pattern for B6C3F1 mouse liver, standardized using the F344 rat liver pattern identifications, according to the method described in the text. Twenty-nine proteins are identified.

$$pI_{RATPLASMA} = f_{RATLIVER X-pi} (f_{RATPLASMA-LIVER X-RATLIVER X} (X_{RATPLASMA})))$$

$$(RATPLASMA X-RATPLASMA+LIVER X (X_{RATPLASMA})))$$
(8)

This unified approach, in which one well-populated 2-D pattern is used to standardize a family of other patterns, has the additional advantage that the resulting pI and M, scales are directly compatible. Hence one can compare the relative $p\Gamma s$ of mouse and rat versions of a sequenced protein in a consistent pl measurement system, and select likely inter-species analogs based on positional relationships on common scales. Adoption of immobilized pH gradient (IPG) technology [4-7] will result in substantial improvements in pl positional reproducibility for standard 2-D maps such as those presented here; however, we believe that our approach will continue to be useful in establishing the empirical pH gradient actually achieved by such gels under given experimental conditions (temperature, urea concentration, etc.), in relating patterns run on different IPG ranges and using different lots of IPG gels (between which some variation will persist). Development of rodent organ maps is a continuing effort in our laboratories [8-10], and results in regular additions of identified proteins. Those who wish to receive current rodent liver maps, with color annotations, should send a stamped self-addressed envelope to the first author.

We would like to thank the individuals who provided antibodies mentioned in Table 1, and R. M. van Frank for unpublished sequenced data.

Received May 31, 1995

References

- [1] Anderson, N. L., Esquer-Blasco, R., Hofmann, J.-P., Anderson, N. G., Electrophoresis 1991, 12, 907-930.
- [2] Rosenfeld, J., Capdevielle, J., Guillemot, J. C., Ferrara, P., Anal. Biochem. 1992, 203, 173-179.
- [3] Witzmann, F., Clack, J., Fultz, C., Jarnot, B., Electrophoresis 1995, 16, 451-459.
- [4] Rosengren, A. E., Bjellqvist, B., Gasparie, V., US Patent 4130470, December 1978.
- [5] Gianazza, E., Artoni, G., Righetti, P. G., Electrophoresis 1983, 4, 321-326.
- [6] Görg, A., Postel, W., Günther, S., Weser, J., *Electrophoresis* 1985, 6, 599-604.
- [7] Gianazza, E., Astrua-Testori, S., Giacon, P., Righetti, P. G., Electrophoresis 1985, 6, 332-339.
- [8] Myers, T. G., Dietz, E. C., Anderson, N. L., Khairallah, E. A., Cohen, S. D., Nelson, S. D., Chem. Res. Toxicol. 1995, 8, 403-413.
- [9] Cunningham, M. L., Pippin, L. L., Anderson, N. L., Wenk, M. L., Toxicol. Appl. Pharmacol. 1995, 131, 216-223.
- [10] Anderson, N. L., Copple, D. C., Bendele, R. A., Probst, G. S., Richardson, F. C., Fundam. Appl. Toxicol. 1992, 18, 570-580.